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SUMMARY

Seismic full-waveform inversions is often hampered by a lack
of low-frequency data, especially in the presence of salt bodies.
Here, We propose a new way low frequency prediction from
high frequencies using an artificial neural network (ANN).
First, we train a neural network to predict low-frequency data
from a sparse set of higher frequencies, using 10,000 ran-
dom model realizations for a given source-receivers geometry.
Second, we predict low-frequency spectra for the acoustic BP
2004 model. We compare predicted and true spectra for short-
and far-offset data to demonstrate the feasibility of our neural
network approach. The predicted low-frequency spectra could
subsequently be used for early full-waveform inversion itera-
tions in the multi-scale approach.

INTRODUCTION

Full-waveform inversion (FWI) is a technique that seeks to
provide a seismic model that matches the observed data trace
by trace by minimizing a data misfit (Warner et al., 2013).
The conventional multi-scale approach (Bunks et al., 1995) in-
corporates successive inversions with gradually increasing fre-
quencies. Inversions of low-frequency data create smooth and
accurate starting models, whereas inversions of high-frequency
data add more high-resolution details. While FWI efficiently
constructs high-resolution estimates of the subsurface parame-
ters without any limitations on the media complexity, its most
significant drawback is that it converges to a local minimum,
which is not necessarily coincident with the global one, when
low frequencies are absent from the data.

There are numerous approaches that try to solve this problem
by introducing advanced misfit functionals (Choi and Alkhal-
ifah, 2015; Warner et al., 2016; Hu*, 2014), expanding the
search space (van Leeuwen and Herrmann, 2013; Wu and Alkhal-
ifah, 2016) and conditioning misfit gradients (Kazei et al., 2015,
2016; Alkhalifah, 2016). Recently Li and Demanet (2016)
suggested extrapolating low frequencies for full-waveform in-
versions with robust initiation by using their event tracking
technique (Li and Demanet, 2015). Each event is extrapolated
to lower frequencies by using a linear phase relation. However,
the event tracking involves some experimental tuning and re-
quires different arrivals to be separable.

In this study, we propose to omit the step of event detection
and instead construct an artifical neural network (ANN) that is
trained to solve the problem of extrapolation. A feed-forward,
neural network is a machine learning tool that can approximate
an arbitrary non-linear function, having a sufficient number of
neurons in a hidden layer topology (Ito, 1992). In the follow-
ing, we investigate the feasibility of such a neural network ap-
proach for a realistic exploration scenario.

METHOD

Our aim is to predict low-frequency data based on band-limited,
high-frequency recordings. The ANN approach taken in this
investigation uses as input real- and imaginary-parts of the
frequency-wavenumber (f-k) spectra from each receiver. The
f-k domain discretization follows (Hu*, 2014) who showed
that it is convenient to sample the spectrum with frequency
steps equal to the targeted, low-frequency value. Additionally,
the input data was normalized to have a zero mean with a stan-
dard deviation of 1 for the neural network. The target, output
data are the true low-frequency amplitude values for each re-
ceiver.

The transformation of raw seismograms into the f-k domain
reduces the dimensionality of the input, thus is better suited
for our neural network approach. To make the neural network
training more stable and faster, we filter out high-wavenumber
data. The filtering is important as computational costs grow
dramatically with increasing size of inputs and outputs, how-
ever with the disadvantage of losing some data information.

Recorded spectra encode the properties of underlying media.
Thus, we try to find a non-linear operator that would repre-
sent the relation between the medium characteristics and the
spectra at each receiver for a given source event location. This
non-linear operator is the ANN described below.

Test case - BP model
The synthetic, true model chosen in this study is the BP 2004
salt model, resampled to be 6 x 33 km in size. It consists of 120
and 675 grid nodes in each direction, respectively. We intend
to extrapolate 0.5 Hz data from 2-3.5 Hz data. The source
spectrum is assumed to be known, yet the algorithm allows us
also to create low frequencies with arbitrary source signatures
in the low-frequency range.

Training set
We create 10,000 random models of the same size for the neu-
ral network training. Obviously, the true BP 2004 model is
omitted from this training model set. These training mod-
els are generated by random perturbations of the model on
a sparser grid. Figure 1 shows the BP model and a typical
random model employed for training, together with the corre-
sponding source-receivers configuration. Seismograms were
recorded at the surface using a line of 201 geophones.

Neural network architecture
The neural network used in this study has two hidden layers
with an optimal number of neurons in each layer selected ac-
cording to (Huang, 2003). The input layer of our neural net-
work (Figure 2) has the size of the reduced data for high fre-
quencies (328 real values), and output layer has the size of data
for a single low frequency (82 real values). Activation func-
tions in both hidden layers were hyperbolic tangent functions
(tanh), whereas the last output layer had linear functions.
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Figure 1: (top) BP 2004 salt model used in this study, repre-
senting the true model; (bottom) a random model utilized in
the training set for the neural network. Source and receivers
are indicated at the surface by green and red dots respectively.

Figure 2: Schematic architecture of the neural network used.
The optimal sizes of the first and second hidden layer are cho-
sen to be 839 and 800 nodes

RESULTS

Training of a neural network is the process of adjusting the
weights between layers. Errors between the true and predicted
outputs are the measure of the training quality. Nesterov’s op-
timization algorithm (Nesterov, 1983) was used to reduce this
error on models used for training. The BP model was not in-
cluded in the training set.

Duration of training on single CPU was about 8 hours, whereas
the resulting extrapolation with the trained net could be done
within a half of a second.

Low-frequency extrapolations
With the trained neural network, we predict the low-frequency
spectra for all receivers using the true BP 2004 model and as-
sociated high-frequency data as input. Figure 3 shows the true
and predicted target values in the frequency-wavenumber (f-k)
domain. Notice that we left only 40 significant values. The ex-
trapolated low-frequency spectrum (blue) follows reasonably
well the true, modeled one (red).

The spectrum in frequency domain (f-x) of the data is shown in
the Figure 4. True and predicted curves are close to each other.
They do not coincide completely due to the dimensionality re-
duction we have made to accelerate the training. Another visi-
ble artifact are the wiggles at the far-offset (large receiver num-
bers). The latter effect has two causes: (i) the fundamental dif-
ficulty in predicting far-offset, low-frequency data from high-

Figure 3: Predicted extrapolation with artificial neural network
(blue) and true, modeled (red) low-frequency f-k spectra.

frequency short-offsets (Sirgue and Pratt, 2004; Kazei et al.,
2013); (ii) Gibbs phenomenon due to the use of box filter in
wavenumber domain to reduce the notorious data dimensional-
ity. The later could be mitigated by using a smoother low-pass
filter instead of a box filter.

Figure 4: Predicted extrapolation with artificial neural network
(blue) and true, modeled (red) low-frequency f-x spectra. Far-
offset receivers (NREC > 160) show a poor fit and could be
muted for FWI purposes.

DISCUSSION AND CONCLUSIONS

We showed that the neural network trained with sparsely sam-
pled f-k spectrum could, in principle, be used as a predictor of
low-frequency data. Short-offset data seem to be better pre-
dicted with higher accuracy than far-offset data. In this study,
we keep receivers fixed at certain locations for all training sam-
ples. This implies that the neural network has to be retrained
for each new survey geometry. Future steps involve running
full-waveform inversions with the predicted low-frequency data
to define the limitations and benefits, estimating uncertainties
and exploring further types of input/output data reductions.
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